Friday, November 13, 2009

Properties and Uses of Metals

There is no simple definition of metal; however, any chemical element having “metallic properties” is classed as a metal. “Metallic properties” are defined as luster, good thermal and electrical conductivity, and the capability of being permanently shaped or deformed at room temperature. Chemical elements lacking these properties are classed as nonmetals. A few elements, known as metalloids, sometimes behave like a metal and at other times like a nonmetal. Some examples of metalloids are as follows: carbon, phosphorus, silicon, and sulfur.

Although steelworkers seldom work with pure metals, we must be knowledgeable of their properties because the alloys we work with are combinations of pure metals. Some of the pure metals discussed in this chapter are the base metals in these alloys. This is true of iron, aluminum, and magnesium. Other metals discussed are the alloying elements present in small quantities but important in their effect. Among these are chromium, molybdenum, titanium, and manganese.
An “alloy” is defined as a substance having metallic properties that is composed of two or more elements. The elements used as alloying substances are usually metals or metalloids. The properties of an alloy differ from the properties of the pure metals or metalloids that make up the alloy and this difference is what creates the usefulness of alloys. By combining metals and metalloids, manufacturers can develop alloys that have the particular properties required for a given use.
Table 1-1 is a list of various elements and their symbols that compose metallic materials.
Very rarely do steelworkers work with elements in their pure state. We primarily work with alloys and have to understand their characteristics. The characteristics of elements and alloys are explained in terms of physical, chemical, electrical, and mechanical properties. Physical properties relate to color, density, weight, and heat conductivity. Chemical properties involve the behavior of the metal when placed in contact with the atmosphere, salt water, or other substances. Electrical properties encompass the electrical conductivity, resistance, and magnetic qualities of the metal. The mechanical properties relate to load-carrying ability, wear resistance, hardness, and elasticity. When selecting stock for a job, your main concern is the mechanical properties of the metal
The various properties of metals and alloys were determined in the laboratories of manufacturers and by various societies interested in metallurgical development. Charts presenting the properties of a particular metal or alloy are available in many commercially published reference books. The charts provide information on the melting point, tensile strength, electrical conductivity, magnetic properties, and other properties of a particular metal or alloy. Simple tests can be conducted to determine some of the properties of a metal; however, we normally use a metal test only as an aid for identifying apiece of stock. Some of these methods of testing are discussed later in this lesson.

Strength, hardness, toughness, elasticity, plasticity, brittleness, and ductility and malleability are mechanical properties used as measurements of how metals behave under a load. These properties are described in terms of the types of force or stress that the metal must withstand and how these are resisted.
Common types of stress are compression, tension, shear, torsion, impact, or a combination of these stresses, such as fatigue. (See fig. 1-1.) Compression stresses develop within a material when forces compress or crush the material. A column that supports an overhead beam is in compression, and the internal stresses that develop within the column are compression.



Tension (or tensile) stresses develop when a material is subject to a pulling load; for example, when using a wire rope to lift a load or when using it as a guy to anchor an antenna. “Tensile strength” is defined as resistance to longitudinal stress or pull and can be measured in pounds per square inch of cross section.
Shearing stresses occur within a material when external forces are applied along parallel lines in opposite directions. Shearing forces can separate material by sliding part of it in one direction and the rest in the opposite direction.
Some materials are equally strong in compression, tension, and shear. However, many materials show marked differences; for example, cured concrete has a maximum strength of 2,000 psi in compression, but only 400 psi in tension. Carbon steel has a maximum strength of 56,000 psi in tension and compression but a maximum shear strength of only 42,000 psi; therefore, when dealing with maximum strength, you should always state the type of loading.
A material that is stressed repeatedly usually fails at a point considerably below its maximum strength in tension, compression, or shear. For example, a thin steel rod can be broken by hand by bending it back and forth several times in the same place; however, if the same force is applied in a steady motion (not bent back and forth), the rod cannot be broken. The tendency of a material to fail after repeated bending at the same point is known as fatigue.
Rockwell “C” number. On nonferrous metals, that are Strength is the property that enables a metal to resist deformation under load. The ultimate strength is the maximum strain a material can withstand. Tensile strength is a measurement of the resistance to being pulled apart when placed in a tension load.
Fatigue strength is the ability of material to resist various kinds of rapidly changing stresses and is ex-pressed by the magnitude of alternating stress for a specified number of cycles.
Impact strength is the ability of a metal to resist suddenly applied loads and is measured in foot-pounds of force.


Hardness
Hardness is the property of a material to resist permanent indentation. Because there are several meth-ods of measuring hardness, the hardness of a material is always specified in terms of the particular test that was used to measure this property. Rockwell, Vickers, or Brinell are some of the methods of testing. Of these tests, Rockwell is the one most frequently used. The basic principle used in the Rockwell testis that a hard material can penetrate a softer one. We then measure the amount of penetration and compare it to a scale. For ferrous metals, which are usually harder than nonferrous metals, a diamond tip is used and the hardness is indicated by a softer, a metal ball is used and the hardness is indicated by a Rockwell “B” number. To get an idea of the property of hardness, compare lead and steel. Lead can be scratched with a pointed wooden stick but steel cannot because it is harder than lead.
A full explanation of the various methods used to determine the hardness of a material is available in commercial books or books located in your base library.

Toughness is the property that enables a material to withstand shock and to be deformed without rupturing.
Toughness may be considered as a combination of strength and plasticity. Table 1-2 shows the order of some of the more common materials for toughness as well as other properties.



Elasticity
When a material has a load applied to it, the load causes the material to deform. Elasticity is the ability of a material to return to its original shape after the load is removed. Theoretically, the elastic limit of a material is the limit to which a material can be loaded and still recover its original shape after the load is removed.
Plasticity
Plasticity is the ability of a material to deform permanently without breaking or rupturing. This prop-erty is the opposite of strength. By careful alloying of metals, the combination of plasticity and strength is used to manufacture large structural members. For example, should a member of a bridge structure become overloaded, plasticity allows the overloaded member to flow allowing the distribution of the load to other parts of the bridge structure.


Brittleness
Brittleness is the opposite of the property of plastic-ity.
A brittle metal is one that breaks or shatters before it deforms. White cast iron and glass are good examples of brittle material. Generally, brittle metals are high in compressive strength but low in tensile strength. As an example, you would not choose cast iron for fabricating support beams in a bridge.

Ductility and Malleability
Ductility is the property that enables a material to stretch, bend, or twist without cracking or breaking. This property makes it possible for a material to be drawn out into a thin wire. In comparison, malleability is the property that enables a material to deform by compressive forces without developing defects. A malleable material is one that can be stamped, hammered, forged, pressed, or rolled into thin sheets.

CORROSION RESISTANCE
Corrosion resistance, although not a mechanical property, is important in the discussion of metals. Cor-rosion resistance is the property of a metal that gives it the ability to withstand attacks from atmospheric, chemical, or electrochemical conditions. Corrosion, sometimes called oxidation, is illustrated by the rusting of iron.
Table 1-2 lists four mechanical properties and the corrosion resistance of various metals or alloys. The first metal or alloy in each column exhibits the best characteristics of that property. The last metal or alloy in each column exhibits the least. In the column labeled “Toughness,” note that iron is not as tough as copper or nickel; however, it is tougher than magnesium, zinc, and aluminum.
In the column labeled “Ductility,” iron exhibits a reasonable amount of ductility; however, in the columns labeled “Malleability” and “Brittleness,” it is last.